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The unification of the quantum theory of fields and general relativity is supposed 
possible on the basis of Sakharov's hypothesis that gravity results from variations 
in vacuum fluctuations. It is shown that under very general conditions this 
hypothesis leads to Riemannian geometry of the world-lines of free particle 
motion. The origin of causal spacetime relations is discussed as the problem 
complementary to that of the source of geometry. This involves an interpretation 
of the EPR experiment and supports the idea that spacetime relations in micro- 
physics result from adjusting quantum processes to the causality of macroscopic 
participators. 

I N T R O D U C T I O N  

Since the  first ar t ic le  by  Eins te in  (1918) on the energy desc r ip t ion  in 
genera l  re la t iv i ty  (GR) ,  the a t tempts  to inco rpora t e  gravi ty into the main-  
s t ream of  field theor ies  coun t -up  a n u m b e r  o f  f undamen ta l  and  seminal  
works,  such as Arnovi t t ,  Deser ,  and  Misne r  (1960), DeWi t t  (1961, 1967), 
U t i y a m a  (1597), K ibb le  (1961), I s h a m  (1975), and  M a r l o w  (1980). In  the 
recent  d e v e l o p m e n t  the theor ies  o f  gravi ty prevai l  that  e i ther  cons ide r  gravi ty 
as a local  gauge  g roup  o f  the  g loba l  Poincare  g roup  (U t iyama  (1957), K ibb le  
(1961), Sc iama  (1962); also see Hehl  et al. (1976) for a review) or, in the 
next  p romis ing  step, as supergravi ty ,  i.e., the  local  gauge  group  o f  g loba l  
s upe r symmet ry  (see Dese r  (1980), van N i e u w e n h u i s e n  (1981), Wess  and  
Bagger  (1983), and  Duff, Ni lsson ,  and  Pope  (1986) for  a review).  N o  genera l ly  
a c k n o w l e d g e d  views howeve r  exist  so far  on the subject .  

Sakha rov  (1968) has i n t roduced  an u n o r t h o d o x  idea  into q u a n t u m  
t rea tment  o f  gravity.  He assumes  tha t  gravi ty  is not  a f undamen ta l  q u a n t u m  
field but  an  i n d u c e d  q u a n t u m  effect caused  by  an in te rac t ion  o f  q u a n t u m  
v a c u u m  f luctuat ions  wi th  space t ime  curvature .  Accord ing  to Sakha rov  
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(1982), Sakharov's commentary, p. 159). "The zero-point Lagrangian of the 
gravitational field is a vacuum correction" brought about by "the change 
in the action quantum vacuum fluctuations accompanying the curving of 
space." The Hilbert action for gravity 

1 f n4-~ dx 
S =  - 16~r----G 

is interpreted as a correction of the first power relative to the invariants of 
the Riemann tensor, with gravitational constant, G, defined by 

Io c~ 161rG -1 ~ k d k  

This integral is constructed from dimensional considerations, ko being a 
cutoff impulse. In the single-loop approximation Sakharov has found 

G _  1 = 1 ~ c~m2 In A 
2r rn~ 

where c~- are constants - 1 ,  and A cutoff parameter. 
The proclaimed secondary status of gravity implies the calculability of 

gravitational constant in the framework of a "right" quantum theory with 
calculable particle mass spectrum. According to the recent development 
(see Adler (1980, 1982) and Misner, Thorne, and Wheeler (1973) for a 
review), the calculability is expected to be realizable within a class of 
quantum field theories. 

The approach based on an action principle however scarcely removes 
all the issues submitted by gravity. (a) The Hilbert action gives itself no 
clue to a mystery of gravitational energy. (b) Though being of a secondary 
origin, gravitational field has to be quantized, so that an expanded quantum 
formalism should be developed to adopt all the gravity anomalies. (c) 
Though not being fundamental from the quantum point of view, the theory 
of gravity will probably alive as a theory of spacetime because the observable 
curved spacetime includes all gravitational phenomena and therefore 
inseparable from them. 

Sakharov's concept can however be also formulated in terms of a 
microscopic model dealing with quantum fluctuation unambiguously. This 
is the way chosen in the present paper. The paper aims to explore Sakharov's 
concept making no use of quantities that still remain ill defined in reference 
to gravity, such as corrections for gravitational energy which itself waits 
for its clear definition. 

Calculations in Section 1 are supposed to be a starting point of the 
program. They show that under fairly general conditions the inhomogeneity 
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in vacuum fluctuations induces the Riemannian spacetime geometry. Expos- 
ing the roots of gravity to be in vacuum fluctuations, this approach gives a 
fundamental meaning to the process of  geodesic deviation rather than to 
metric. The structure of the Einstein equations is examined from this point 
of view. This leads (Section 2) to the definition of invariant gravitational 
energy. These results are expected to provide a background for the attempts 
of deriving the Einstein equations on a microscopic basis. 

In short, a way to the invariant energy description is the following. 
Taking into consideration the Einstein equations, one arrives at the idea 
that the source of gravity, i.e., the energy-impulse distribution in spacetime, 
has its immediate counterpart in vacuum inhomogeneity which duplicates 
this distribution. Then, the vacuum inhomogeneity in empty space should  
be a counterpart of gravitational energy located there. This leads to the 
energy-momentum tensor for gravity to be a tensor with ten independent 
components, like for ordinary matter, but with the algebraical structure of 
the Weyl tensor. This is in accordance with the recently given (Gliner and 
Dymnikova (1983)) covariant energy description of gravity. The Einstein 
equations are generalized to fourth rank equations in order to include 
gravitational energy. 

The duplication of energy-momentum distribution by the pattern of 
the vacuum inhomogeneity implies that the Einstein equations should be 
regarded as equivalence relations (of the " E  = mc 2kind'') rather than 
differential equations (cf. Gliner and Dymnikova (1983)). This seems to be 
important for understanding the origin of spacetime relations. 

Another expectation, based also on Sakharov's vision ((1982), papers 
15 and 16), is that the gravity in empty space represents a kind of vacuum 
polarization caused by matter. The slow decrease of the polarization is due 
to the absence of negative masses, so that there arises no double charge- 
layers that localize the polarization strongly. In this vision the origin of 
the Einstein equations is a problem of quantum polarization that should 
be now reconsidered with due account of the Weyl pattern of gravitational 
energy. Therefore a promise exists that the Einstein equations, at least in 
the first approximation, can be obtained independently of so far question- 
able quantum theories of advanced levels. 

Sections 3 and 4 discuss extremely hypothetical issues of the origin of 
(3 + 1) spacetime dimensionality and causality in their possible connection 
with quantum fluctuations. 

The involvement of vacuum fluctuations in the curving of spacetime 
implies that spacetime on the whole can also be closely connected with the 
fluctuations (cf. Misner, Thorne, and Wheeler (1973). In Section 3 a 
pregeometry is constructed as a set of the fluctuations with ordering 
operators identified with particles. A possibility is discussed that (3+ 1) 
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dimensionality and causality are not inherent in or generated by this set. 
Their institution is assumed due to the macroscopic censorship--the same 
ties that exist between macroscopic  participators and quantum reality. In 
Section 4 the idea of an indefinite dimensionality on the pregeometrical 
level is linked with a kind of proximity revealed in such phenomena as 
distant quantum correlations or the identity of  physical constants throughout 
the universe. 

Sakharov's idea about  a fundamental  role of  vacuum fluctuations in 
physical world is apparently a way to the unification of still separated 
branches of physics. 

1. The macroscopic averaging eliminates the influence of uniformly 
distributed quantum vacuum fluctuations on macroscopic particle's world- 
lines. But an inhomogeneity in the spacetime distribution of the fluctuations 
would cause a systematic drift of  a particle along the gradient of  the 
inhomogeneity. Such a process cannot be eliminated by averaging and 
therefore affects the particle motion. One can suspect that just this 
inhomogeneity causes a geodesic deviation that transforms Minkowskian 
spacetime into a curved spacetime. 

There is a philosophic reason for this hypothesis (it is really a reminis- 
cence of a known Einstein's remark concerning spacetime). The unvarying 
density of  vacuum fluctuations would turn the fluctuations into an unphy- 
sical phenomenon which influences other phenomena but is influenced by 
nothing. So, the distribution of vacuum fluctuations is expected to be a 
dynamic variable. Another reason. Because of the evidence that free particle 
motion is independent of  particle properties, the run of the world-lines of  
free motion provides the only arena where an inhomogeneity in vacuum 
fluctuations can be clearly displayed. 

The complete quantum consideration is not necessary to estimate the 
general effect of a vacuum inhomogeneity on macroscopic particle motion. 
The Markov theory is applicable to fluctuations under very general condi- 
tions. The formal mathematical  postulates that give the meaning to the 
macroscopic averaging can be the following. (a) Microscopic particle motion 
is a strong Markovian process, i.e., the subsequent random displacement 
of a particle only depends on a random current state of  particle motion but 
not on any preceding conditions ("future is independent of  past for known 
random present").  (b) Spacetime has an intrinsic probabilistic topology, 
i.e., open spacetime domains can be specified so that a particle inside an 
open domain will stay there for a nonzero time. Under these conditions 
averaged particle paths exist and each of them can be defined as a continuous 
function of  a parameter  affiliated with a path. In terms of spacetime geometry 
it can be affine parameter. These general results lead us to avoid the averaging 
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itself but nevertheless find the class of geometries to which the averaged 
paths belong. 

The "weak equivalence principle" says that the particular properties 
of elementary particles do not contribute to their averaged paths. In the 
context of the present paper or Sakharov's action principle it is a quantum 
postulate which should be justified in a future quantum consideration. In 
terms of microscopic particle motion the postulate can be formulated as 
follows. The frequency of the displacements of a particle influenced by 
vacuum fluctuations is equal to particle's characteristic frequency, rnc2/h, 
whereas each displacement is equal to the Compton length of the particle. 
Then a particle roams with the velocity of light, independently of the particle 
properties. The microscopic paths of unidentical particles are composed 
from the displacements of  specific characteristic length for each kind of 
particles. Since however the frequency of  the displacements is in inverse 
ratio to their length, the difference between microscopic paths of unidentical 
particles does not influence the macroscopic particle paths. 

The world-lines of freely moving particles represent the only basis for 
all geometrical physical measurements. In the sense of this principle of 
relativity, the spacetime geometry is the geometry of the world-lines. A 
metric is introduced by the condition that the world-lines are extremum 
lines of this geometry. In the sense of this identification, the world-lines of 
free motion are below called geodesics. 

An inhomogeneity in vacuum fluctuations will be called weak if the 
corresponding spacetime geometry has, as its tangent geometry, the 
geometry belonging to a homogeneous fluctuation pattern. This implies that 
the weak approximation can be defined by the condition that the effect of 
fluctuations should be completely expressed in terms of one scalar potential 
function because a tensorial potential would be incompatible with the 
suggested local homogeneity. The pattern of relative accelerations 
of geodesics is therefore established by means of the derivatives of a scalar 
function. This particularly means that in the limit of vanishing gap between 
geodesics the influence of  the inhomogeneity on their relative run vanishes 
a lso(no effects on the particle itself in the weak approximation). Therefore, 
the vacuum inhomogeneity affects no characteristic of a single path, all 
effects are relative, involves two or more paths, and distance conditioned. 
Nonsingular gravitational situation can be apparently thought of as related 
to a weak vacuum inhomogeneity. 

In physical measurements each relation between given geodesics can 
be only defined by means of other, measuring, geodesics crossing the 
measured ones. The formal technique for such measurements is well-known 
as the measurements of geodesic deviation. To reveal explicitly the symmetry 
between measured and measuring world-lines, let us consider a symmetric 
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scheme of  the infinitesimal measurement of geodesic deviation. Let { U} 
and { V} be two-dimensional congruences of geodesics, each of them cover- 
ing the same open two-dimensional infinitesimal neighborhood {P} of a 
point P. (This geometrical construction is always possible, at least locally, 
because it is globally possible in the homogeneous spacetime.) Each of 
these congruences can be used for measuring geodesic deviation in another 
congruence. One can, e.g., consider a geodesic U ~ { U}, neighboring upon 
geodesic Uo ~ { U} passing through the point P, and use the segments between 
U and Uo on geodesics from { V} as a basis for measuring a deviation U 
from Uo. In the same manner, the congruence { U} can be used to depict 
deviation in { V}. 

Along with a spacetime point P, the required scalar function must 
evidently also depend on variables connected with the both measured and 
measuring congruences. Let us choose these variables to be displacements 
along geodesics U ~ { U} and V c { V}. In an infinitesimal neighborhood {P} 
these displacements can be presented as vectors 

I i = u u  i and n = v v  i (1) 

where u i and v i are vectors tangent to geodesics U and V, and u and v 
increments of affine parameters along these displacements. Then the 
required function can be supposed to be a function of three arguments: 

I = I (P;  I i, n ~) (2) 

Since the measurement process is symmetric relative to both congruences, 
1 i and n ~ enter the function symmetrically, i.e., 

I (P;  Y, n') = I (P;  n', 1') (3) 

If a congruence { V} is taking to be measuring, then n ~ has the sense of the 
separation vector between a geodesic Uo passing through P and a nearby 
geodesic U ~ { U}. 

With the accuracy up to infinitesimal quantities of higher order, the 
second differences t~2n i of the separation vector along U are proportional 
to the acceleration of a geodesic U relative to Uo. Therefore one must 
suppose that, within this accuracy, the vector field 82n i in {P} is defined 
by the derivative OI/an ~. 

The form of the function I (P;  l ~, n ~) can be now found from the 
condition that the relative acceleration vanishes in the limit of zero 
separation. This means that 

OI/Oni=O if ~abl"nb=O (4) 

because there is no separation if vectors I i and n i are parallel. Let us consider 
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the formal expansion in the power  series relative to l ~, n~: 

I ( P ;  I i, n ~) = ao+  a . ( U  + n ~) + a,,blan b + bab(l~l b q- nan b) 

+ a a b c ( l a l b n  c + n a n b l  c) + babc( lalblC + n a n b n  ~) 

+ aabcdlalb~l ~n d + babc d ( U l b l ~  n d + n an  bn cld ) 

+ 

where coefficients ao, a~, 

OI/On i = 
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Cabcd ( lalblCl a + nanb n C//a) +" �9 �9 (5) 

�9 �9 �9 b~K, �9 �9 �9 c~z.~ depend  on P only. Then, formally, 

a~ + a J  a + 2boina+ aabilal b + 2aiab//al b 

+ 3 blab n an  b _.1_ 2aabc i la lbn  c -t- babcilalbl  c 

+ 3biabcn~nbU + 4Ciab~nanbn ~ + . . .  

Taking n ~ = kY,  k = const, one obtains, by virtue o f  (4), 

a~ + ( a, .  + 2 kba~) I ~' + ( aab i n t- 2 ka~ab + 3 k 2 biab ) l"Ib 

+ (2kaabc i  +babc i  + 3k2biabc  + 4kaCiabc ) la lb l  c + . . . .  0 

Equat ing to zero terms that  are linearly independent  relative to k and l ~, 
one finds 

ai  = aik = bik = 0 

a(~k)t = ai(kZ) = bi(kl) = 0 (6) 

a(ikl)m = b(ikl)m = b~(ktm) = Ci(klm) : 0 

Due to these symmetry properties,  the lowest order  term contributing to 
the r ight-hand side of  (5) is the four th-order  t e r m  aabcdlalbnCn d. Allowing 
for the terms of  higher orders in (5), it is easy to show that  the fifth-order 
terms are o f  orders 12n 3, 13n2, so that 

I ( P ;  I i, n i) = 1 . . . .  b c d --~dabcd I 1 // I~ ~ - O ( / 2 n  3, 13ll 2) (7) 

where J~kt,,, = -- 2 a~k~m. 

The symmetry  properties o f  the tensor  J~k~m which immediately follow 
from this equat ion are 

J ,~ ,~  = J k . , .  = J ~ . . t .  (8) 

Because o f  (3) 

Finally, it follows f rom (6) that  

Jikl~ = Jlr~ik (9) 

Ji(klm) = 0 (10) 
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From the properties of  symmetry given by (8)-(10), it is evident that the 
tensor Jikl,,(P) must be identified with the Jacoby curvature tensor. Therefore 
one comes to the standard treatment of  geodesic deviation in Riemannian 
geometry. The Riemannian metric can be introduced by the condition for 
geodesics to be the extremal curves in this metric. 

Equating the second difference r~2n i with OI/On i, dividing the equation 
obtained by u, and passing to the limit u ~ O, one obtains the equation of 
geodesic deviation 

6 2 n i / 3 u 2  --i a b c =--J ,bcn  U U + o ( n ' )  (11) 

which determines the relative acceleration of geodesics in congruence { U} 
in terms of separations given by increments of  the affine parameter  on 
geodesics in congruence { V}. 

To make the interpretation of this equation free from the choice of 
congruences of  geodesics, one can perceive that above this choice has been 
made quite arbitrary. Therefore one can consider (11) as a relation between 
two arbitrary neighboring geodesics, say U and U', one passing in the 
direction u i through a point P and another in an arbitrary direction through 
some nearby point P' .  The segment n'  on the third geodesic connects points 
P and P'.  One can further notice that the choice of U' is also quite arbitrary, 
and only the variables P, P ' ,  and u ~ influence the acceleration. So, in terms 
of particle motion (if applicable), one concludes that all particles passing 
a point P '  are "seen" by an observer passing a point P in a direction u ~ as 
moving with the same acceleration given by (9). Hence the property of  free 
moving particles to be mutually accelerated is reduced to the property of  
spacetime. 

This consideration also reveals that the affine parameter  v, the "dist- 
ance" between points P and P' ,  is independent of affine parameter  u. 
Therefore parameter  v can be eliminated from equation (11). The Riemann 
curvature tensor can be introduced by 

-- i (  Ritkm + Rimkl ) ,  Riklm = Jiklm -- 1 4Jmtki]l 

In the result, the equation of geodesic deviation takes its standard form 

62v i 
~ i  a b c 

t ~ U 2 -  'XabcU V U (12) 

where, however, the Riemann tensor gets the new interpretation as a manifes- 
tation of a vacuum inhomogeneity. Passing to the limit u -+ 0, v -~ 0 in (5), 
one can also find the finite form of the scalar function (3), 

1 =  l im u - 2 v - 2 I ( p ;  I i, n i) = --�89 
u,o-~.O 
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2. The touchstone of  each attempt to bridge the gap between quantum 
theory and general relativity is probably the gravitational energy. The 
energy-momentum operator is inseparable from a quantum formalism. 
Merging gravity into this formalism is therefore inevitably ambiguous until 
the covariant energy description of gravity is found and introduced into 
the quantum consideration. The present paper discusses only the classical 
aspect of  this problem. The recently given (Gliner and Dymnikova (1983)) 
covariant energy description of gravity is confirmed here from the point of 
view delivered by Sakharov's concept. The description seems appropriate 
for incorporating it into a quantum formalism. 

Sakharov's concept alters the starting point of GR. With the idea that 
the roots of gravity are in vacuum fluctuations, the process of geodesic 
deviation acquires a fundamental sense, analogous to that of metric in the 
standard approach. Hence, it is the equation of geodesic deviation that 
should appear now as the geometric basis of the theory. The reference to 
the metric tensor as the main concern of the Einstein equations 

i i Gk = --KTk (13) 

now seems to be out of place, so that these equations must be reinterpreted 
with due regard of this fact. Let us consider the decomposition of the 
Riemann tensor given by 

= Ilm + Cl,~ (14) 

where C ~  is the Weyl tensor and 

I l k  XgRit,.'-,k ~ G  i i k k i 1 i k = -~, . ,1 , . , , , , -  -~, , ,G~ + ~ , ~ G t ) + ~ ( ~ , ~ , , - ~ 6 ~ ) G  (15) 

which is a tensor equivalent to the Einstein tensor due to 

i 1-ia 1Ri Tab 
a k ~ l a k  --~tpk.Lba 

Equations (13)-(15) include only algebraic operations. In that way 
Einstein's equations appear, in the concept of the vacuum inhomogeneity, 
to be algebraic rather than differential. This means that they constitute an 
equivalence relation, in the same sense in which this term is commonly 
applied to the equation E - mc 2. This equivalence relation is between energy 
(understood in the sense of  the full energy-momentum ternsor T~) and the 
vacuum inhomogeneity described by the tensor G~ or, which is the same, 

ik I~m. In this sense, "energy is vacuum inhomogeneity" (cf. also Zel'dovich, 
1967). 

To complete this interpretation, the second term in equation (14), the 
Weyl tensor, should also find its energetic equivalent by means of  some 
equivalence relation analogous to the Einstein equations (13). The simplest 
consideration is the following: Since vacuum inhomogeneity duplicates 
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"energy," the vacuum inhomogeneity in a spacetime region, where energy- 
momentum tensor vanishes, is the equivalent of the energy of gravity. 
Therefore, the energy description of gravity is produced by a tensor with 
the symmetry of the Weyl tensor, both these tensors are joined by an 
equivalence relation. 

The analogues conclusion has been already made by Gliner and 
Dymnikova (1983) and explained as follows. The conversion of Newtonian 
space and time into the Minkowskian spacetime caused the correlated 
modification of the energy description of matter. One may expect a further 
modification concurrent to the institution of Riemannian spacetime 
geometry. This modification has to be done with due regard of the anisotropy 
of Riemannian spacetime: a corresponding anisotropy of the components 
of the energy-momentum tensor might be expected. The formal mathemati- 
cal realization of this idea (Gliner and Dymnikova (1983)) converts the 
energy-momentum tensor into a forth rank tensor, say TI k, with the same 
symmetry as the Riemann tensor. The contraction of this fourth-rank energy 

ik tensor gives the standard energy-momentum tensor. The traceless part, Tim , 
of the energy tensor, which was called the energy deviator, has the same 
algebraic structure as the Weyl tensor. Therefore these tensors can be 
combined in an equivalence relation 

i k  ~ ik  Ct,~ = -K Tl,~ (16) 

complementary to the Einstein equations. In particular, this equivalence 
relation provides the full energy description of gravity. The energy deviator 
describes the spacetime anisotropies of the components of the energy- 
momentum tensor, i.e., anisotropies of mass, impulse, and their fluxes. 

Equation (16) can be regarded as an equivalence relation covering the 
part of the energy associated with the Weyl tensor, in particular with the 
gravitational field in empty space. The equivalence relations (13) and (16) 
can be joined in the combined equivalence relation 

i k  i k  Glm = -K Ti,, (17) 

where G~t k is the Riemann curvature tensor in the form providing Gagi" = Gk,i 
with G~ the Einstein tensor, and TI k is the energy tensor in the form 
providing Tia~k = T~. The agreement of relation (17) with GR follows from 
the fact that (Gliner and Dymnikova, 1983), being considered as differential 
equations relative to the metric tensor, this relation can be reduced to the 
standard second-rank Einstein equations whenever the equations of state 
for matter are independent of the gravitational field. 

The concept outlines above argues in favor of an inhomogeneity in 
vacuum fluctuations being the origin of gravity understood in terms of 
Einstein's general relativity. The properties of gravity in this approach, 
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however, naturally acquire their description also in terms of the quantum 
theory of fields, where previously they appeared peculiar. This raises hope 
for the unification of quantum and gravity theories on the basis of deducing 
the Einstein equations from quantum arguments. 

3. The (3+ 1) spacetime relations between vacuum fluctuations were 
suggested above. This is the view of quantum field theory, but evidently 
presents only a substitute for the process of the formation of (3 + 1) spacetime 
dimensions. The applicability of this substitute in different branches of 
microphysics seems to be rather trivial. It anticipates the already known 
macroscopic spacetime relations. Such a trick removes the spacetime forma- 
tion from the procedure of  macroscopic averaging. Therefore some incon- 
sistency exists in the previous section. The experience in microphysics 
speculations does validate the treatment of vacuum fluctuations in terms 
of (3 + 1) spacetime relations (at least in its final results). At the same time, 
the (3 + 1) spacetime dimensions remain to be granted as a primary reality, 
contrary to the expectation that the whole of spacetime geometry, including 
its dimensional properties, must find its explanation in something more 
fundamental. 

This and the next section are devoted to a preliminary discussion of 
this point. An effort is made to guess what kind of hypothesis on the origin 
of the causal (3 + 1) spacetime relations would be made by an unprejudiced 
mind influenced by known physical facts rather than a priori opinion on 
the interrelation between micro- and macrophenomena of nature. 

One finds just vacuum fluctuations to be the most deep-rooted entities 
of reality. Therefore an inviting idea is to treat vacuum fluctuations as 
primary or primitive physical events. One can propose, on the basis of  the 
"no ad hoe assumption rule," that these primitive events form an uncount- 
able, unordered point set, a primitive set, possessing by itself no dimensions 
and structure (to be, so to speak, the material base of the world). From the 
common point of view each elementary particle is disturbed by a sequence 
of vacuum fluctuations. In terms of the primitive set as the primary reality, 
this picture should be reversed to consider particles in their relation to the 
primitive set. Then a particle can be pictured as a sequence of these 
disturbances, i.e., a primitive path on the primitive set. In this sense a particle 
is defined by an ordering operator on the primitive set which arranges some 
primitive events in an enumerable sequence. The no ad hoc assumptions 
rule assumes further that each primitive path constitutes its own particular 
dimension. A primitive event that is in common for a number of paths can 
be regarded as a preinteraction between particles. The preinteractions turn 
the set of one-dimensional paths into a multidimensional primitive net or 
pregeometry. 
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There exists an internal integer measure given by the number of primi- 
tive events along a path. This measure introduces the smallest feasible unit 
of predistance with no physical constant being involved and no room for 
an event between two successive primitive events. In terms of this measure 
one can introduce a predistance between primitive events Po and Pl along 
a given sequence of path segments as 

S ( p o ,  P l )  = • q~[ dx~]  (18) 
(~) 

where [ d x  ~] is the number of primitive events on the uth segment and q~ 
is a matrix, all of  these segments together are assumed to constitute a given 
path between Po and p~. The measure quadratic in S can be introduced as 

S2(po, Pl) = el[  dXl]  z + " " " + e~[ d x " ]  2 + " " �9 (19) 

where e 2= 1, and the number of dimensions is not restricted. 
Thus, some structure arises to a considerable extent naturally on the 

primitive set. But somewhere near this point the potentialities contained in 
the starting notions are exhausted, and one faces two options: either (1) 
admit that a spacetime ordering comes into the primitive set from an upper 
physical level (e.g., as a result of a selection rule posed by some already 
existing laws governing the particle behavior, so that only such virtual paths 
or geometries surv i ve  that are in accordance with the laws); or (2) without 
any intrinsic causes, introduce between elements of the primitive set such 
peculiar interrelations that are already equivalent to certain advanced phy- 
sical laws that provide spacetime ordering suitable for sensible physics. 

That the physical laws are founded on the deepest level of reality is 
probably the traditional train of thought. But no evidence really exists in 
favor of this point of view, whereas the relation between classical and 
quantum mechanics testifies to quite the opposite. 

According to Landau and Lifshitz (1977), "A more general theory can 
usually be formulated in a logically complete manner independently of a 
less general theory which forms a limiting case of it . . . .  It is in principle 
impossible, however, to formulate the basic concepts of quantum mechanics 
without using classical mechanics." Distant correlations in quantum systems 
demonstrate the nontrivial character of this peculiar relation, as was first 
revealed by Einstein, Podolsky, and Rosen (EPR) (Einstein et  al., 1935). 
Let us summarize the relevant facts in terms of paths in the phase space of 
a quantum system: 

Let D be the set of possible macroscopic participators (experimental 
arrangements) d in the spacetime development of a quantum system Q. For 
a given d ~ D there exists such a set P of the virtual phase paths p of the 
system Q that the quantum mechanical probabilities of the values of  observ- 
ables can be defined by the Feynman integration along the paths p c P. The 
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EPR phenomenon is the fact that P = P(d), i.e., P depends on d 6 D. To 
describe the total situation, one can say that although the union I._)a~o P(d) 
of all sets P(d) represents the quantum system proper, only such virtual 
paths survive, i.e., contribute to the quantum mechanical probability, that 
are compatible with a given macroscopic participator d ~ D obeying the 
laws of classical physics. 

Applying this rule to the primitive net, one evidently has to conclude 
that only such primitive paths survive (in their interrelation with upper 
physical levels) and contribute to the macroscopically observable particle 
motion that are compatible with the (3 + 1) geometry of macroscopic par- 
ticipators. Thus, the quantum concept of macroscopic participator justifies 
the consideration of microphysical reality in terms of the (3 + 1) geometry 
that is granted from above. By analogy with quantum mechanics, no con- 
sideration of  the process of surviving itself is expected to be necessary and, 
probably, possible. 

4. In searching for the origin of the (3+1) causality, the idea of 
surviving redirects us to macroscopic physics. This is in line with causal 
relations in quantum mechanics. Based on the correspondence principle, 
quantum mechanics introduces no causal requirements that would be 
stronger than the macroscopic causality in the macroscopic limit. This 
implies that all causal relations in quantum physics can be formulated in 
terms of its limiting case, macroscopic physics. Therefore, within the scope 
of the no ad hoc assumption rule, one might expect that any process at a 
microlevel is causally admissible if no violation of causality at the macro- 
scopic level is involved. Probably no theoretical evidence exists against a 
much stronger statement: microphysics is the expansion of macrophysics 
subjected only to the condition that macrophysics is provided as a limiting 
case. This, so to speak, principle of macroscopic censorship adopts the 
minimum of a priori assumptions, can serve as a working principle, and 
allows of verification. 

In the spirit of the idea of surviving or macroscopic censorship (in its 
strong or weak form), one concludes that causality "enters" physics at the 
macroscopic level with causal relations relaxing downward. The complete 
lack of predictability at the lowest level would be logically satisfactory 
because the lack of even stochastic causality eliminates the irrational specu- 
lation of the existence ad infinitum of deeper and deeper levels inside 
physical substance. 

The causality relaxation could clear the way to a number of unclassical 
interactions. Not restricted in their spreading by the speed of light in the 
(3 + 1) macroscopic manifold, they could be a tool for linking a large physical 
system into a single whole in spite of the impossibility of classical interaction 
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between remote parts of the system. The existence of distant correlations 
in quantum systems apparently confirms that the set of unclassical interac- 
tions is not empty. These correlations represent (at least in the scope of a 
not extremely sophisticated interpretation) quantum effects including either 
the instant change of the state of a system or the influence on a system of 
an arrangement involving no classically defined forces. Along with the EPR 
phenomenon, distant correlations are inherent in such effects as the influence 
of spin on the symmetry of a wave function, the unlocalizability of a particle 
in relativistic quantum theory (Hegerfeldt, 1984; Hegerfeldt and Puijsenaars, 
1980), the Aharonov-Bohm effect (Aharonov and Bohm, 1959; Wodkiewicz, 
1984; Babiker and Loudon, 1984), and the influence of a distant magnetic 
field on the angular momentum of a system (Lipkin and Peskin, 1982). All 
these formally nonlocal effects cannot, however, provide macroscopic super- 
luminal signals and therefore involve no violation of macroscopic causality. 

Considering all these effects as a relaxation of causality that results in 
some kind of instant communication, one comes to the idea of non- 
Einsteinian proximity. The idea of an unusual proximity also arises in fields 
not connected with quantum mechanics immediately, e.g., in the problem 
o f  the identity of physical laws and constants throughout the universe. In 
the search for a clue to the origin of the fundamental constants, for example, 
it is natural enough to seek their roots in the most universal logical construc- 
tions, such as natural numbers or arithmetic axioms. Such an approach 
must deal, however, with the problem of the anthropic peculiarities of the 
universe. Even a small alteration of the values of  the fundamental constants 
would cause such deep changes in the universe that neither human beings 
nor organic life would be possible (Dicke, 1961; Carter, 1974, 1983; Carr 
and Rees, 1979; Press and Lightman, 1983). So, either the anthropic collec- 
tion of the fundamental constants is already contained implicitly in the 
"primordial things and ideas" such as natural numbers or arithmetic rules, 
or the constants drop into newly arising universes stochastically, so that 
life has a chance to appear in a convenient universe. The first alternative 
implies an unbelievable predetermination of just the anthropic universe in 
the utmost abstract notions (though why not?). So, one probably prefers 
to choose the second and try to explain how stochastically arising entities 
can be identical over the whole universe. 

There is an analogy between this problem and distant quantum correla- 
tions. The argument of the impossibility of a causal communication between 
the remote parts of a physical system is present in both cases, as well as 
the affiliation of  all involved physical quantities to the same integral physical 
system (the universe in the first case, an isolated quantum system in the 
second). Therefore, one can believe that just the relaxation of macroscopic 
causality leads to effects that provide remarkable properties of the universe, 
such as the uniqueness of the physical laws and constants, the universal 
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symmetries defining fundamental properties of matter, and the ability of a 
physical system to act as a whole. The non-Einsteinian proximity acquires 
in this interpretation the simple physical meaning of affiliation to a single 
physical system. 

Some kind of restoration of the prestige of macroscopic physics laws 
follows from the above discussion. This does not seem surprising. After 
macroscopic averaging, the congruence of virtual paths of a quantum system 
turns into a single admissible path. This gives no reasonable choice but 
deterministic causality at the macroscopic level. The observed arranging 
role of macroscopic participators--i.e., the significance of the limiting case 
of a more general theory--simply makes clear that just the unflexible 
macroscopic causality logically restricts the variations of physical reality 
and, in particular, fixes (3 + 1)-dimensional spacetime geometry as one of 
the geometries (or the unique geometry) that provides the consistency of 
physics as a whole. The idea, put in an especially sharp form by Wheeler 
(1980; Misner et al., 1973), of a logical ground of physics is therefore 
extended to the thought that deterministic macroscopic physics is a logical 
ground (roof?) of physics. Being a deterministic scheme, macroscopic 

�9 physics could be considered as an isomorphism of a "calculus of proposi- 
tions" in accordance with Wheeler's idea. 

In this connection, it is a fact of great importance that the system of 
macroscopic laws is unique, at least in some restricted sense. For instance, 
a world with another number of spacetime dimensions than ours would 
possess some anomalies making impossible the existence of stable atoms 
(Gurevich and Mostepanenko, 1971). The principle of macroscopic censor- 
ship leads us to expect that the problem of the uniqueness of the system 
of physical laws can be reduced to the corresponding problem for macro- 
scopic laws only. 

From the considered hypothetical point of view, the problem of the 
unification of quantum theory and general relativity cannot be dealt with 
apart from the context of the causal structure of the physical world. 
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